7 research outputs found

    Combination of linear classifiers using score function -- analysis of possible combination strategies

    Get PDF
    In this work, we addressed the issue of combining linear classifiers using their score functions. The value of the scoring function depends on the distance from the decision boundary. Two score functions have been tested and four different combination strategies were investigated. During the experimental study, the proposed approach was applied to the heterogeneous ensemble and it was compared to two reference methods -- majority voting and model averaging respectively. The comparison was made in terms of seven different quality criteria. The result shows that combination strategies based on simple average, and trimmed average are the best combination strategies of the geometrical combination

    Randomized Reference Classifier with Gaussian Distribution and Soft Confusion Matrix Applied to the Improving Weak Classifiers

    Full text link
    In this paper, an issue of building the RRC model using probability distributions other than beta distribution is addressed. More precisely, in this paper, we propose to build the RRR model using the truncated normal distribution. Heuristic procedures for expected value and the variance of the truncated-normal distribution are also proposed. The proposed approach is tested using SCM-based model for testing the consequences of applying the truncated normal distribution in the RRC model. The experimental evaluation is performed using four different base classifiers and seven quality measures. The results showed that the proposed approach is comparable to the RRC model built using beta distribution. What is more, for some base classifiers, the truncated-normal-based SCM algorithm turned out to be better at discovering objects coming from minority classes.Comment: arXiv admin note: text overlap with arXiv:1901.0882

    A dynamic model of classifier competence based on the local fuzzy confusion matrix and the random reference classifier

    No full text
    Nowadays, multiclassifier systems (MCSs) are being widely applied in various machine learning problems and in many different domains. Over the last two decades, a variety of ensemble systems have been developed, but there is still room for improvement. This paper focuses on developing competence and interclass cross-competence measures which can be applied as a method for classifiers combination. The cross-competence measure allows an ensemble to harness pieces of information obtained from incompetent classifiers instead of removing them from the ensemble. The cross-competence measure originally determined on the basis of a validation set (static mode) can be further easily updated using additional feedback information on correct/incorrect classification during the recognition process (dynamic mode). The analysis of computational and storage complexity of the proposed method is presented. The performance of the MCS with the proposed cross-competence function was experimentally compared against five reference MCSs and one reference MCS for static and dynamic modes, respectively. Results for the static mode show that the proposed technique is comparable with the reference methods in terms of classification accuracy. For the dynamic mode, the system developed achieves the highest classification accuracy, demonstrating the potential of the MCS for practical applications when feedback information is available

    Probability-driven scoring functions in combining linear classifiers

    No full text
    Although linear classifiers are one of the oldest methods in machine learning, they are still very popular in the machine learning community. This is due to their low computational complexity and robustness to overfitting. Consequently, linear classifiers are often used as base classifiers of multiple ensemble classification systems. This research is aimed at building a new fusion method dedicated to the ensemble of linear classifiers. The fusion scheme uses both measurement space and geometrical space. Namely, we proposed a probability-driven scoring function which shape depends on the orientation of the decision hyperplanes generated by the base classifiers. The proposed fusion method is compared with the reference method using multiple benchmark datasets taken from the KEEL repository. The comparison is done using multiple quality criteria. The statistical analysis of the obtained results is also performed. The experimental study shows that, under certain conditions, some improvement may be obtained
    corecore